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Abstract—On the basis of a first-order shear deformation beam theory, a finite element method is
presented for the analysis of free vibration of arbitrarily stepped beams. The effects of shear
deformation, step geometry, step eccentricity and multiple stepped sections are investigated. The
phenomenon of dynamic stiffening is also analysed and discussed. The numerical results show the
importance of including bending—extension coupling for certain eccentrically stepped beams.

1. INTRODUCTION

Stepped beams are frequently found in structures due to fabrication, assembly, stiffness
and space constraints. Many studies have been reported on the dynamic behavior of stepped
beams. Balasubramanian and Subramanian (1985) and Subramanian and Balasubramanian
(1987,1989) investigated the effect of a single stepped section on the free vibration of stepped
beams. Using Euler beam theory, Jang and Bert (1989a,b) reported the exact solutions for
the natural frequencies and mode shapes of a stepped beam under various boundary
conditions. Laura et al. (1991) presented some experimental results for the natural fre-
quencies of stepped beams. The phenomenon of dynamic stiffening created by a stepped
section was also discussed in their work. Yuan and Dickinson (1992), using the Rayleigh—
Ritz method with artificial torsional and linear springs connecting the stepped and the main
sections, reported the natural frequencies for a stepped beam with various boundary
conditions.

In the above studies, the neutral axes of the stepped section and the main section are
assumed to be collinear for the whole span of the beam. Moreover, the beams are restricted
to those having a single stepped section. In practical applications, stepped beams may not
be created in this manner due to considerations of fabrication and assembly. Such beams
are said to be eccentrically stepped as the neutral axes of the stepped section and the main
section of the beam are no longer collinear. An example of such a stepped beam is a beam
which has a flat bottom surface and a top surface with a step variation in profile. In this
case, coupling between bending and extension is induced. Beams with multiple steps may
also be desirable for various structural applications.

In the present study, a first-order shear deformation beam theory and the cor-
responding finite element formulation are presented. This finite element model can be used
to analyse the dynamic characteristics of beams with multiple stepped sections. In the
model, the effect of bending—extension coupling is included for eccentrically stepped beams.
The effects of shear deformation and the geometric parameters on the natural frequencies
and mode shapes are discussed. The phenomenon of dynamic stiffening is also analysed
and discussed.

2. THEORY AND FORMULATION

Finite element formulation
Based on the first-order shear deformation Timoshenko beam theory, the displacement
field is assumed to be of the form
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Fig. 1. A three-noded beam element and its intrinsic coordinates.
u(x, z) = ug(x)+zx(x)
w(x, z) = wy(x) t))

where uy(x) and wy(x) are the axial and transverse displacements of the mid-plane, respec-
tively, and ¢,(x) is the rotation of the plane normal to the mid-plane.
From eqn (1), the normal strain &, and shear strain y,, are

auO 6(Px
“~x P ox
ow,
yxz— ax Px- (2)

For a very thin beam, the shear deformation can be ignored, that is, y,, = 0, and eqn
(1) reduces to the Euler beam theory.

As shown in Fig. 1, the beam element has three nodes, and each node has three degrees
of freedom, namely, u,,, wo; and ¢,,, respectively. The displacements uy(x) and w(x), and
the rotation ¢,(x) in eqn (1) can thus be interpolated in terms of the intrinsic coordinate ¢
as

Uy = i N(Ouo;

i=1

3
Wo = Z N,(Eywe;

i=1

¢x= ¥ Ni(&)ox 3

i=1
where N{&), with i = 1-3, are the interpolation functions given by

Ni(§) = —E(1-0)/2
No&) =(1-¢%
N3O = & +9)/2. 4)

Substitution of eqns (3) and (4) into eqn (2) gives
{e} = [B){d} %)
where

{e} = [eey]"
[B} = [B, B, B,]
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Fig. 2. Elements at a connecting node k.
{0} = [6,:0,6,]" (5a)
and
Ni X 0 ZM x .
B] = ’ 1, i=1-3 5b
[l 0 .
{5i} = 1o Wo; (Pxi]T, i=1-3. (5¢)
The stress—strain relations are
0. _ &,
{sz} B [D] {sz} (6)
where
E 0
(D] = [0 kG] (62)

and E and G are the Young’s modulus and shear modulus of the beam. The shear correction
factor k used in this study is 5/6.
The element stiffness and mass matrices are

(K] =j J j [BI"[D][Bld «d.

[m] =J Jj pINTT[N]d (. M

where [, and A, are the length and the cross-sectional area of the beam element, respectively,
p is the density of the material of the element, and
N, 0 zN; N, 0 zN, N, 0 =zN
V=" A NS 2 (7a)
0 N O 0 N, O 0 N, O

It can be seen from eqns (7) and (7a) that the transverse, in-plane and rotatory inertia
is naturally included in the element mass matrix [m)].

Displacement continuity conditions

Consider the two elements at the connecting node k& shown in Fig. 2. The element
nodal displacement vectors and the element stiffness and mass matrices of element I and
element II are {6}, {6}, [k], [K]', [m] and [m]', respectively, where {6} and {8} are defined
as
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{5}‘ = [u(l)k’ w(l)ks (p}cks utl)ma wll)ma (P}cm: u(&m w(l)m (Pi'n]T' (8)

The displacement continuity at node k& is enforced by assuming

Wor = er)k
. 9a
{(ka = (pik ( )

For the axial displacement, the following equation can be established
Uok— €QP e = Upk (9b)
Here, the eccentricity e of two beam sections with a step is considered positive when
the neutral axis of the left section is at a higher level than the right one.

Using the above relations, the element nodal displacement vector of element II can be
expressed as

{6}' =[T1{s}' (10)

where the displacement vector {3}’ and the transformation matrix [T] are

{3}1 = [uﬂks Woks Pks u(l)mx wém» @)l:ma u(l)m wém (p}m]T (103)
and
[T] = Diag[4, 1, I] (10b)
with
1 0 —e 1 0 0
[Al={0 1 o [I]=|0 1 o© (10c)
0 0 1 0 0 1

Consequently, the element stiffness and mass matrices for element II are transformed
as:

k1" = [TTTkT'[T)
(A = [T][m}'[T]. (1

The matrices [k]' and []' are used to assemble the global stiffness matrix and mass
matrix for element II

Calculation of modal parameters
The following eigenvalue equation is obtained by assembling all the element matrices:

(K1 -’ [M]{A} = {0} (12)

where [K] and [M] are the global stiffness and mass matrices, respectively, w is the natural
frequency and {A} is the corresponding mode shape.

The subspace iteration method (Bathe and Wilson, 1976) is used in the finite element
program to solve the above eigenvalue problem.
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Fig. 3. A typical stepped beam.

3. NUMERICAL RESULTS AND DISCUSSION

An eccentrically stepped beam, shown in Fig. 3, is investigated in order to study the
dynamic behavior of stepped beams. The cross-section of the stepped beam can be rec-
tangular or circular. The parameters H; ), L), [y, and A, are the height, length, area
moment of inertia and the cross-sectional areas of the main section and the remaining
section of the beam.

For convenience, the following geometric parameters are defined :

L=L,+L,

ve = Lo/L

yu = Hy/H,

vi= Db/l

Ya = Aa/A,
yu = H,/L. (13)

The convergence of the present method and the corresponding finite element program
is checked by varying the number of elements for the beam. For the stepped beam,
convergence to at least five significant figures is obtained when the mesh is between 10 and
30. It is important to point out that if the ratio of the height to length of the beam is very
small, shear locking may occur for the present model just as for other C° continuous plate
and shell elements. In this case, the reduced and selective integration methods and other
methods suggested by Huang (1989), Subramanian and Balasubramanian (1989) and
Ramesh Babu et al. (1987) could be adopted to overcome this problem.

Comparison with exact solutions

In order to validate the present model and the corresponding finite element program,
the natural frequencies of stepped beams with circular cross-sections under clamped—
clamped and clamped—free boundary conditions having various y, are computed. Results
are reported for the zero eccentricity case in Tables 1 and 2, along with exact solutions
(presented within parenthesis) by Jang and Bert (1989b). It is found that the relative
differences between the present results and the exact solutions are less than 2%. Although
the reported exact solutions were obtained by using the Euler theory, the effect of shear
deformation can be expected to be very small because of the small ratio of height to length
(1/25) used in the computations. Also, as expected, the present results are always smaller
than the corresponding exact solutions due to the effect of shear deformation and rotatory
inertia. In conclusion, the accuracy of the present model is sufficient for engineering
applications.

Effect of shear deformation

The effect of shear deformation on the natural frequencies of stepped beams is depen-
dent on the beam geometry, material properties and boundary conditions. Figures 4a and
4b show this effect due to the variation in the length of the stepped section for stepped
beams of clamped—clamped and clamped-free boundary conditions. The cross-section of
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Table 1. Frequency coefficient §; of a circular cross-section clamped-free stepped beam: y, = \/*}7 ,
=12, 75, =1/25,e=0

/ EI
;= §, : P
pA L

Mode Mode Mode Mode Mode
7T 1 2 3 4 5

1 3.5143 21.775 61.432 120.59 199.40
(3.5160) (22.234) (61.697) (120.902) (199.860)

5 2.4351 22.1250 78.194 141.98 245.20
(2.4373) (22.0345) (78.559) {142.572) {(245.589)

10 2.0413 20.984 85.232 154.88 258.87
(2.0629) (21.0943) (85.625) (155.515) (259.312)

20 1.7343 19.274 89.735 174.26 266.65
(1.7418) (19.3670) (90.143) (174.940) (267.045)

40 1.4614 17.302 91.718 199.64 273.07
(1.4685) (17.3857) (92.129) (200.362) (273.521)

Figures in parentheses are from Jang and Bert (1989b).

Table 2. Frequency coeflicient f, of a circular cross-section clamped--clamped stepped beam: y, = \/E, y = 1.2,
Ve = 1/25,e =0

;= ﬁi EI‘
pA, Lt

¥ Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

1 22,271 61.403 120.51 199.44 297.90
{22.3733) (61.6742) (120.903) (199.859) (298.556)

5 25.831 77.788 141.50 245.09 358.56
(25.9531) (78.1518) (142.088) (245.592) (359.097)

10 27.542 84.974 153.87 258.83 398.64

(27.6807) (R5.3656) (254.595) (259.252) (398.97)

20 30.175 §9.802 172.56 266.41 443.67
(30.3213) (90.2097) (173.279) (266.839) (444.351)

40 34.157 92.135 197.56 272.44 473.79
(34.3252) (92.5507) (198.276) (272.912) (474.506)

Figures in parentheses are from Jang and Bert (1989b).

the stepped beam is rectangular. For the clamped—free beam, the thinner section is at the
free end. The percentage difference in natural frequencies, Af, is defined as:

Af=f‘3—_—f§x 100% (14)

where f; and fg are the frequencies obtained without and with shear deformation. The
results for f¢ are obtained independently using an Euler beam element.

The present results show that the effect of shear deformation on the higher modes is
more significant than on the lower modes, and more significant for clamped-clamped beams
than for clamped-free beams. As expected, it can been seen that the shorter the length of
the stepped section, the stronger the effect.

Effect of eccentricity of the stepped section

If a beam is eccentrically stepped, that is, e #0 in Fig. 3, the coupling of bending and
extension is induced because the neutral axes of bending of the stepped section and main
section are not collinear. In this case, the bending-extension coupling must be included in
the vibration analysis. A stepped cantilever beam and a stepped clamped—clamped beam
of rectangular cross-section are considered in order to investigate this kind of effect. Asin
the previous case, the percentage difference in natural frequencies can be defined as:
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Fig. 4. Effect of shear deformation on natural frequencies of stepped beams.

Af=éi°.~iiﬂx 100% (15)
e#0

where f, . , is the frequency for the case of e # 0, while f, _ , is the frequency for the case of
e=10.

The results presented in Table 3 show that the effect of the eccentricity of the stepped
section on the natural frequencies depends on the boundary conditions of the stepped
beam. For a clamped—free beam with the thinner section at the free end, this kind of effect
can be negligible. However, for a clamped—clamped beam, the effect is noticeable. As
expected, due to the increase in stiffness caused by the bending—extension coupling in
eccentrically stepped beams, the natural frequencies are higher than the natural frequencies
of beams with non-eccentrically stepped sections.

Effect of thickness variation across a step

The effect of thickness variation across a step is examined by keeping H, constant
while varying H,. The ratios of the natural frequencies of the stepped beam with respect to
the natural frequencies of a uniform beam of thickness H, are presented in Figs 5 and 6.
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Table 3. Percentage difference (%) in natural frequencies due to eccentricity of the stepped section:
Ya=13,9=1/27,y4 = 1/3, yp = 1/15,e = H,/3

Boundary Clamped—free Clamped-—clamped
YL Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
0.1 0.4 1.9 1.1 22 8.0 3.5
0.2 04 0.2 09 5.3 6.1 5.6
0.4 0.5 1.6 0.8 7.0 27 24
0.6 0.1 0.3 0.7 2.1 2.1 1.9
08 0.3 0.2 0.6 43 1.5 2.0

ratio of natural frequencies

1.5
1.0
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Y
a. mode I
ratio of natural frequencies
1.5
e v, =112
2y, = 15
1.0
05

b. mode II

Fig. 5. Effect of thickness variation across a step on the natural frequencies of a stepped beam with
clamped-free boundary conditions.
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ratio of natural frequencies
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Fig. 6. Effect of thickness variation across a step on the natural frequencies of a stepped beam with
clamped—clamped boundary conditions.

It can be seen that the variation of natural frequencies of a stepped beam compared
to the corresponding uniform beam is dependent on the beam geometry and the boundary
conditions. For a clamped—free beam with the thinner section at the free end, and for lower
value of y,, the increase in natural frequencies is significant. This increase in natural
frequency can be of the order of 50% for the first mode. It is interesting that this kind of
increase in frequencies is obtained by reducing the cross-section, or, in other words, by
removing material from a uniform beam. This phenomenon is called “dynamic stiffening”,
and has some practical applications (Subramanian and Balasubramanian, 1987; Laura,
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Fig. 7. A beam with a stepped section of L/10 length.

1991). The reason for the many peaks and troughs in Figs 5 and 6 is that the natural
frequencies of stepped beams are dependent on both the relative loss of stiffness and mass
caused by the presence of the stepped section. This effect is discussed in detail in the
following section.

On the “dynamic stiffening’’ of stepped beams

Geometrically, a stepped beam is created by removing material from a section of a
corresponding uniform beam. This leads to the loss of both mass and stiffness. Generally,
a reduction in stiffness AJ can cause a decrease in natural frequency, and a reduction in
mass Am can cause an increase in natural frequency. Compared to a uniform beam, the
natural frequency of a stepped beam is dependent not only on reductions in mass and
stiffness but also on the location where the stepped section is created. Figure 7 shows a
stepped beam where the location x/L of the step section varies, and the length of the step
section is 1/10 of the beam length.

To investigate the individual effects of Am and AI for a clamped—free beam, first, let
AI = 0 and Am # 0 (by artificially modifying the matrices in the finite element program).
The ratios of natural frequencies of the present stepped beam to a corresponding uniform
beam are computed and are presented as curve 1 in Fig. 8 as a function of the location of
the stepped sections ; second, let Am = 0 and AI # 0, curve 2 is obtained ; third, let Am # 0
and Al # 0, and curve 3 is computed.

It can be seen from Fig. 8 that the amount of increase (due to the reduction in mass
Am) and the amount of decrease (due to the reduction in stiffness Al) are quite different,
and the final natural frequency depends on both the above factors although the effect of A7
is generally dominant. When the stepped section is located near the free end, the natural
frequency of a stepped beam may be higher than that of the corresponding uniform beam.

Effect of multiple stepped sections

Figure 9 shows a uniform beam (beam I) and two beams with multiple stepped sections
(beam II and beam III). Beam I1I is eccentrically stepped with a flat surface. Table 4 shows
the natural frequency coefficients of the three beams for clamped—free and clamped—clamped
boundary conditions.

The results show that for the clamped—free boundary conditions, the difference between
the natural frequencies of beam II and those of beam I11 is slight. However, for the clamped-
clamped boundary condition, the difference is noticeable for the fundamental frequency.
In the case of the clamped—free boundary condition, the fundamental frequencies of both
beam II and beam III are about 16% higher than the fundamental frequency of the
corresponding uniform beam (beam I). For the clamped—clamped beam with multiple
stepped sections, the natural frequencies show a significant decrease compared to the
natural frequencies of the corresponding uniform beam.

4. CLOSURE

On the basis of a first-order shear deformation theory, a finite element model is
presented for the analysis of free vibration of stepped beams. The model can be used to
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Fig. 8. Effects of Am, Al and both Am and A7 on the natural frequencies of a stepped beam with
clamped—free boundary conditions.

compute the natural frequencies and mode shapes of beams with multiple eccentrically
stepped sections. The numerical results show good agreement with available exact solutions.
The effect of shear deformation, beam geometry, bending—extension coupling of eccen-
trically stepped beams and multiple stepped sections on the natural frequencies and mode
shapes are presented for beams with clamped—clamped and clamped-free boundary
conditions. The dynamic stiffening phenomenon is also discussed.
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Fig. 9. A uniform beam and two beams with multiple stepped sections.

Table 4. Natural frequency coefficients £, of a uniform beam and beams with multiple steps:

W, = 18:‘ EI%
pd L?
Boundary Beam Mode Mode Mode Mode Mode
condition pattern H 2 3 4 5
C-F Beam [ 3.5107 21.738 61.407 120.41 199.38
Beam II 4.1191 12.318 28.934 55,158 93.571
Beam I1E 4.1201 12.324 28.934 55.163 93.640
cC Beam 1 22.264 61.383 120,42 199.39 297.79
Beam II 11.680 28.969 55222 93.627 143.50
Beam IH 12.525 29.174 55437 93.750 144.12
C-F clamped-free ; C-C clamped—clamped.
REFERENCES

Balasubramanian, T. S. and Subramanian, G. (1985). On the performance of a four-degree-freedom per node
element for stepped beam analysis and higher frequency estimation. J. Sound Vib. 99(4), 563-567.

Bathe, W. I, and Wilson, E. (1976). Numerical Methods in Finite Element Analysis. Prentice-Hall, Englewood
Cliffs, NJ.

Huang, H. C. (1989). Static and Dynamic Analysis of Plates and Shells. Springer, Berlin, Heidelberg.

Jang, S. K. and Bert, C. W. {1989a). Free vibration of stepped beams : exact and numerical solution. J. Sound
Vib. 130(2), 1342-1346.

Jang, S. K. and Bert, C. W. (1989b). Free vibration of stepped beams : higher mode frequencies and effect of steps
on frequency. J. Sound Vib. 132(1), 164-168.

Laura, P. A. A, Rossi, R. E.,, Pombo, J. L. and Pasqua, D. (1991). Dynamic stiffening of straight beams of
rectangular cross-section: a comparison of finite element predictions and experimental results. J. Sound Vib.
150¢1), 174-178.

Ramesh Babu, C., Subramanian, G. and Prathap, G. (1987). Mechanics of field consistency in finite element
apalysis—a penalty function approach. Comput. Structures 25(2), 161173,



On the free vibration of stepped beams 3137

Subramanian, G. and Balasubramanian, T. S. (1987). Beneficial effects of steps on the free vibration characteristics
of beams. J. Sound Vib. 118(3), 545-560.

Subramanian, G. and Balasubramanian, T. S. (1989). Effect of steps on the free vibration characteristics of short
beams. J. Aero. Soc. India 41(1), 71-74.

Yuan, J. and Dickinson, S. M. (1992). On the use of artificial springs ih the study of the free vibrations of systems
comprised of straight and curved beams. J. Sound Vib. 153(2), 203-216.



